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New Reciprocity Theorems for Chiral,
Nonactive, and Biisotropic Media
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Abstract—Two generalized reciprocity theorems for homogeneous bi-
isotropic media are presented that do not invoke a complementary
space. One of them is eminently crosspolarized involving real sources
and fields, while the other is a generalization of the Lorentz theorem
and is therefore eminently copolarized, invoking generalized sources
or fields. These theorems constitute the foundation for new variational
expressions leading to a reaction-type development with capabilities to
handle biisotropic/nonactive/chiral/isotropic materials.

I. INTRODUCTION

The basic Reciprocity Theorem of Electromagnetics was initially
presented by Lorentz [1] for scalar fields, and generalized to vector
fields, to become what we know today as the Lorentz form [2], [3].
Lorentz’s contribution was a direct extension of the work of Rayleigh
in vibrating mechanical systems [4] and optics [S]. Also, as pointed
out in [6] and [7], it was Heaviside who, contemporary with the
earliest work of Rayleigh, invoked what we know today as reciprocity
for Electrical Networks.

Over the years, the basic theorem was extended to suit different
circumstances, such as time harmonic fields, time domain, inhomo-
geneities, boundary conditions, anisotropy, piezoelectric media, and
bianisotropy among others. Of special interest to us here is the work
of Kong and Cheng [8], who considered the full bianisotropic case
and departed from the previous line of thought. In order to state a
reciprocity theorem in the vein of the Lorentz Theorem, they invoked
a complementary space characterized by material different from that
of the original space. This is important to us because biisotropy is a
special case of bianisotropy, and in turn, chirality is a special case
of biisotropy.

What this means is that a reciprocity theorem is available that ap-
plies to both chirality and biisotropy. Whereas chirality is inherently
reciprocal (hence the term chiral reciprocal), biisotropy does require
the introduction of a (different) complementary space. It is possible,
however, to produce a new reciprocity relation for biisotropic and
chiral materials by proper exploitation of the technique of decom-
position of general fields into circularly polarized components {91,
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which has been used by this author [7] to obtain a nonLorentzian
reciprocal relation for isotropic materials.

The isotropic work [7] included applications and stressed the fact
that the new theorem complements the old one in that the new
one is eminently cross-polarized, while the old one is eminently
co-polarized. As stated in [7], this concept is important, because
it constitutes the foundation for a development of variational ex-
pressions that complements Rumsey’s Reaction principle [10] and
has potential to handle complex systems with high degree of cross-
polarization.

The isotropic work in [7] resembles Tai’s Complementary Theorem
[11]; and it has been recently brought to the attention of the author
that one of the main results of [7] was apparently derived almost
simultaneously and by entirely independent means by Fel’d and
published in the Russian literature under a somewhat misleading title
[12].

Aside from the notable work of Kong and Cheng on a reciprocity
relation directly applicable to biisotropy, we can also cite the relevant
works of Krowne [13] and Lindell er al. [14]. Here, we present a
new reciprocity theorem that does not require the introduction of a
complementary space.

II. ANALYSIS
The constitutive relations for biisotropic media are [9]

D=<E+~yH, B=pH+pE )

where the dimensions of v and £ are inverse to that of speed. The
medium is lossless if F and p are real, and v = /3*. The condition for
the medium to be reciprocal is v = —/3, and the resulting material
is commonly known as chiral.

A general field decomposition in biisotropic media in terms of
RCP/LCP (right/left circularly polarized) fields in the presence of
electric (J) and magnetic (M) sources is possible via [9], [15]

E=FE,+E. H=H,+H- Q)
T=T,+J_. M=M,+M_ 3)
E+() =FjntH+(7) (4)
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where 74 / k4 refers to the wave impedance/number of the RCP/LCP
field components. Note that the chiral case results in 9, = n—. On the
other hand, v = /3 results in k+ = k_, defining a class of materials
as broad as the chiral reciprocal, and referred to as the nonactive
case [9].

Unlike chiral materials, which do not admit linearly polarized
solutions, nonactive materials do allow linearly polarized fields,
leading to very interesting effects such as magnetic dipole fields,
which do not close, but which are open spiral lines that go from pole
to pole [9], or Cherenkov radiation with helical magnetic field lines
[9]. Fig. 1 illustrate these points.

Basic equations pertinent to the partial fields have been presented
and solved in [9] and will not be repeated here since they will not
be employed.

I Thanks are extended to A. Lakhtakia for reference to the paper of Fel'd.
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Fig. 1. Tllustration of magnetic field lines in nonactive materials. (a) Sin-
gle-cone Cherenkov radiation. helical lines. (b) Open spiral lines (going
from pole to pole) of an elementary electric dipole. The figures describe the
analytical representation contained in [9].

Once the above RCP/L.CP decomposition is performed, each partial
field obeys isotropic laws, i.e., the RCP fields sense a homogeneous
space characterized by k4 and 74, whereas the LCP sense k_ and
71—. In absence of boundaries the RCP/LCP field components are
uncoupled [9]. It then follows that any relationship that applies to
RCP/LCP fields in homogeneous isotropic unbounded space is also
applicable here for each field component. The effect on the total
fields can then be obtained by reversing the previous process and
expressing the partial fields in terms of the total fields. The inverse
relationship being

_ neJ M

7 = 0.
=7 s+ 0o

@

Our recent paper [7] introduced one such relationship. In [7, eq.
(19)] it was found that partial RCP/LCP fields in unbounded domains
do satisfy reciprocity, which can be cast in the form of two scalar
equations
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where
ur =HY T -HL TP ©

and the superscripts (1) and (2) refer to the two sets of sources
TN, 3y and (TP, 37®). Tt may appear somewhat strange
that we can obtain a relationship for the total fields/sources in the
biisotropic medium out of (8), which applies to two different spaces
(k+.n+ and k_.n-). The reason is that the two spaces are one
and the same as seen by the sources. This can be seen from the
network model of the excitation, which was presented graphically in
[15, Fig. 2].

It should be noted that in reality (8) and (9) are a direct statement
of reciprocity of RCP/LCP field components in biisotropic media.

Appropriate enforcement of (8) via (7) and (9) will yield two
independent reciprocity theorems. Care must be exercised so as to
identify components characteristic of the Lorentz theorem, or the
newer, cross-polarized theorem [7]. Use of (7) in (9) results in (10),
shown at the bottom of the page.

A. The First Relationship
To obtain a first theorem, we enforce according to (8)

/ de(n++n_){5‘—i+“—‘}:0. a1
oo s T+
After some algebra, and using the following identity [9]
nen- = pfe=n" (12)
the above results in
/ ar (7 B 4270 T
— / dT{M(Z) . F(l) + 7727(2) . 'I_T(l)} 13)

which is identical in form to the new reciprocity theorem for isotropic
media [7], and consequently we adopt the same abbreviation, namely

[1.2] = [2.1]. (14)

This new reciprocity theorem is eminently cross-polarized and applies
to all biisotropic media, including chiral as well as isotropic media,
with no restrictions. To avoid confusion, it should be emphasized that
all sources act on the same biisotropic space. We should also add that
in a sense (13) and (14) is more general than the Lorentz theorem,
since the latter clearly cannot apply to nonreciprocal (in the standard
sense) biisotropic media (among the reasons, it cannot account for
cross-polarization).

B. The Second Relationship

Use of (13) in the two relations (8). and after some elementary
algebra, can be shown to lead to just a single integral relationship

/ dT{ (’7 w: ﬁ) T T 7 )

+ {F(Z) 7Y Y i +M(2) iy TASO Ny v AC)

/ drug =0 (8) : F‘”}} = 0. (15)
o 1 {:i:n:':[ﬁ(Z) ~H(l) _ F<1) -_M—(2)] +j77:2F[F(2) 'j(l) _FW .7(2)] } (10)
Jls +n—) +j[E'(2) -H(l) _ E(l) -M(Z)] T U?[F(z) _7(1) _ E(l) .7(2)]
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By properly combining (15) with (13), we can write the result in a
more symmetrical form, namely

/ a7V B - ')

= / ar{7® . BV - M® 7Yy (16)
which involves the real fields (E, F) and the generalized sources
(T, M), which are defined according to

7:7_(%)ﬂ mzﬁ—(%ﬁ>i an

Equation (16) can be rewrittﬂ in still another symmetrical_fo_rm
involving the real sources (J, M) and the generalized fields (€, H),
defined according to

E:F+<7+C_/3>F, ﬂ=ﬁ+(%>’E’ (18)
and which yield
/ PRy IO (OB =GN
- / dr{7® .29 _ 3@ 7Yy, (19)

Equations (16) and (19) are different forms of the same identity,
which is eminently co-polarized and constitutes the second reciprocal
relationship for biisotropic media. For convenience we introduce the
notation

{1.2} = {2,1}

to represent reciprocity in the sense of (16) or (19). Once again
we emphasize that all sources act on the same biisotropic space.
It should be noted that for the chiral and isotropic cases v + 3 = 0,
and the generalized quantities become the real quantities, and (20)
reduces to the standard Lorentz Reciprocity Theorem, which is
usually abbreviated as (1,2) = (2,1). We should add that evidently
(16) and (19) are generalizations of the Lorentz theorem.

(20

IH. CoNCLUSION

Two generalized reciprocity theorems are presented that apply to
homogeneous biisotropic media and do not invoke a complemen-
tary space. One of the theorems is eminently crosspolarized and
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constitutes the extension of a recently derived new theorem for
isotropic regions. The second theorem is a generalization of the
Lorentz theorem and is therefore eminently copolarized, invoking
generalized sources or fields. The relationships presented here are
useful not only for validation purposed of theory/mumerical codes,
but also because they constitute the foundation for new variational
expressions leading to a reaction type development with capabilities
to handle biisotropic/nonactive/chiral/isotropic materials.
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